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Over the past decade, before pursu-
ing a particular line of research, scientists
(including C.G.B.) in the haematology and
oncology department at the biotechnology
firm Amgen in Thousand Oaks, Califor-
nia, tried to confirm published findings
related to that work. Fifty-three papers were
deemed ‘landmark’ studies (see ‘Repro-
ducibility of research findings’). It was

tive clinical uses for existing therapeutics.
Nevertheless, scientific findings were con-
firmed in only 6 (11%) cases. Even knowing

the limitations of preclinical research, this
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In studies for which findings could be
reproduced, authors had paid close attention
to controls, reagents, investigator bias and
describing the complete data set. For results
that could not be reproduced, however, data
were not routinely analysed by investigators
blinded to the experimental versus control
groups. Investigators frequently presented
the results of one experiment, such as a sin-
gle Western-blot analysis. They sometimes
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pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research

Begley CG, Ellis LM. 2012. Drug development: Raise standards for preclinical cancer research. Nature 483: 531-533.

As has been shown previously, the
probability that a research finding
is indeed true depends on the prior
probability of it being true (before
doing the study), the statistical power
of the study, and the level of statistical
significance [10,11]. Considera 2 x 2

Nevertheless, most new discoveries
will continue to stem from hypothesis-
generating research with low or very
low pre-study odds. We should then
acknowledge that statistical significance
testing in the report of a single study
gives only a partial picture, without
knowing how much testing has been
done outside the report and in the
relevant field at large. Despite a large
statistical literature for multiple testing
corrections [37], usually it is impossible
to decipher how much data dredging
by the reporting authors or other
research teams has preceded a reported
research finding. Even if determining

loannidis JPA. 2005. Why most published research findings are false. PLoS Med 2: e124.



Experimenter’s contribution
to reproducible research

® Experimental Design
® Statistics
® Documentation

® |nterpretation






Example

| ® test a couple of drugs
» on whether they affect

e[o the expression of a
W,
= gene

® quick shot: gPCR with
technical replicates



a first test

200 -

150 -
- I
9
7 - 1 I
o
x
© 1
=L
- -
50 -
O_
I
oooooo drug A drug B drug C drug D drug E

“Wow, drug A shows a significant effect,
the error bars do not overlap!”




failure to repeat the result
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the manuscript

expression

- Results/Discussion:
[...] we surprisingly observed
T Fig.1: Drug A inhibits . .
PCR measurement of of drug A on the expression of
gene X transcript levels
I upon administration of a gene X[...] Drug A mlght
solvent control or 10 yM of .
drug A to proliferating XYZ pr0V1de a new means to treat
lls for 24 h . .
|| EmEreT e disease Z [...]
e a— Materials and Methods:
voatment RT-qPCR was performed with Kit Q according
Reference[1]. Statistical analysis was done in
GraphPad Prism.

.. gets published, original data deleted



the manuscript
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Fig.1: Drug A inhibits
expression of gene

oooooooooooo

. Statistical analysis was done in
Pad Prism.

.. gets published, original data deleted



Irreproducible because of..

® improper data presentation, interpretation
and documentation

® improper treatment of replicates
® sampling bias
® improper usage of statistics

® inexistent experimental design



QRP

Good Questionable Fabrication
Research Research Falsification
Practices Practices Plagiarism

‘Ideal’ Sloppy Un-\conscious bias Conscious bias  Falsifica-/tion  Fabrication

http://www.vib.be/en/news/Pages/Research-misconduct---The-grey-area-of-Questionable-Research-Practices.aspx

Examples of QRP:

* Neglecting negative outcomes

* Using inappropriate statistics to support one’s hypothesis
* Inappropriate research design

* Leaving out relevant controls

* Inappropriate re-use of controls

* Removal of ‘outliers’

* Conscious bias

* Unethical experimentation

* Peer review abuse



key to reproducible research
is the moment you start to
think about reproducibility



How to generate
experimental results that are

valid in general,
that will be reproducible?

the sample - population
relationship






same result




Replicability <4——"—""> Reproducibility

Reproduction of the original results using the

same protocol/reagents/tools different reagents/
tools but the same

Reproduction using

Reproduction
just based on

by a different by a different protocol by a o
: text description
2y e sane person in the [l person outside different person >
person outside the lab

lab the lab
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pointed out [9-11] that the high
rate of nonreplication (lack of
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Inference

Howto



starting from the population
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starting from the population

gene X expression (population)
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Standard Error (of the mean) - SEM

® The standard error of the mean (SEM) is the
standard deviation of the sample mean estimate of
a population mean.

SEM = standard deviation/square root(n)

® a small SEM indicates that the sample mean is likely
to be quite close to the true population mean

® a large SEM indicates that the sample mean is likely
to be far from the true population mean


http://en.wikipedia.org/wiki/Sample_%28statistics%29
http://en.wikipedia.org/wiki/Statistical_population
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Confidence Intervals

® 95%-confidence interval: An estimated interval which

contains the ,,true value™ of a quantity with a probability
of 95%.

interval estimate

point estimate, mean of population

® (|- x)-confidence interval: An estimated interval which
contains the ,,true value™ of a quantity with a probability

of (1-&).
| - = confidence level, @ = error probability
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Different example

Someone asks: ““how many dead cells are in
your culture?”

You use a hemocytometer to determine the
viability of cells stained with trypan blue.
You count 94 unstained cells and 6 stained.

How can the data be reported?

Example taken from “Intuitive Biostatistics,” H. Motulsky



Different example

Someone asks: ““how many dead cells are in
your culture?”

You use a hemocytometer to determine the
viability of cells stained with trypan blue.
You count 94 unstained cells and 6 stained.

How can the data be reported?

95% C1=0.02-0.13

Example taken from “Intuitive Biostatistics,” H. Motulsky



Prerequisites for inference

® the sample has to be representative
® how is representativity achieved!
® |arge sample number

® independent sampling/random
recruitment of samples



Technical replication

The exact same sample is analysed multiple times.

This addresses the variability of the analysis procedure
(mass spectrometer, gQPCR machine, pipetting errors etc.)

Inference on the population aims however at the
estimation of the biological variability. There is no interest
convoluting this estimation with measurement errors.

Technical variability should not be reported in the result
of a biological experiment.

Technically replicated measurements have to be averaged
before inferential analysis.



Example

An enzyme level is measured in cultured cells.The
experiment is repeated on 3 days. Each day triplicate
measurements (technical replications) are performed.

Summarise the data and justify your procedure

replicate | replicate 2 replicate 3
Monday 234 220 229
Tuesday 269 967 275
Wednesday 254 249 246

units/(min*mg)

Example taken from “Intuitive Biostatistics,” H. Motulsky




replicate | replicate 2 replicate 3 Mean

Monday 234 220 229 227.67

Tuesday 269 T 275 272
Wednesday 254 249 246 249.67
Grand Mean 249.78

“The experiment was performed three times in
triplicate. After removing one extreme outlier, the

mean for each experiment was calculated. The
grand mean is 249.8 (n=3).95% ClI (194.7;304.9)
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Error Bars

Fig.1: Drug A inhibits
expression of gene x. RT-
gPCR measurement of
gene x transcript levels
upon administration of a
solvent control or 10 yM of
drug A to proliferating XYZ
cells for 24 hours.

® the type of error has to

be reported (SD, SE...)

n has to be reported

errors (and statistics)
should only be based on
biological replication



Error Bars

show SD when you are interested in showing the scatter

show the SEM (or confidence interval) when you want to know
how well you know the population mean

some people like to display SEM for another reason:

SEMs are smallest measure of error and thus look nicest (SEM
= SD/SQRT (n)) always report n!

The scatter (however expressed) means different things in
different contexts. Is the author showing the variability among
replicates in a single experiment? Variability among experiments
with genetically identical animals? Variability among cloned cells,
or within patients? etc. etc.



Error bars and significance

® The link between error bars and statistical significance is weaker
than many wish to believe.

® But:if two SEM error bars overlap you can conclude that the
difference is not statistically significant (p>0.05), but that the
converse Is not true.

® Some graphs and tables show the mean with the standard
deviation (SD) rather than the SEM.The SD quantifies variability,
but does not account for sample size. To assess statistical
significance, you must take into account sample size as well as
variability.
Therefore, observing whether SD error bars overlap or not tells you
nothing about whether the difference is, or is not, statistically significant.



Looking at effects
comparing population means

drug effect on gene X (population)
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Density
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log2(expression gene X)

mean difference = mean(treatment)-mean(control)=-1 (0.5 in linear space)
=THE EFFECT
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confidence interval of

group means
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statistical (hypothesis) testing

Test for how likely an observed effect
happened by chance (there was no effect)
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null distribution

significant!!??
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the p-value is the probability to
observe an effect of the measured
size (or larger) by chance (there
was no effect in first place)



if p < X
we reject the null hypothesis
and call the result “significant”



prerequisite of statistical tests

® formal requirements of the test procedures
have to be met (distribution of the
measurement values (normal, not-normal),
equal variances across groups etc.)

® test parameters have to be set appropriately

® the decision for a test and its parameters has
to be taken before data collection

® sampling has to be representative



two-sample t-test

null hypothesis: there is no difference in the means
of the measurements in the two groups (=drug
has no effect)

alternative hypothesis: there is a difference (=drug
has an effect)

two-sided test: the difference might be positive or
negative

one-sided test: the difference is either positive or
negative

t-test requires normal distribution of the
measurements

Student-t test requires equal variance
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two-sample t-test

n=4
Welch Two Sample t-test
] §_| | I E—
data: example.experiment S 4 5 & 7 8
t = -1.0131, df = 5.228, p-value = 0.3556 log2(expression)

mean: -0.46

alternative hypothesis: true difference in means is not
equal to O

95 percent confidence interval:
-1.6122931 0.6921616

sample estimates:

mean in group 1 mean in group 2

6.330660 6.790726
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error of statistical tests

Distribution of the
test statistic
under the null
hypothesis

Distribution of
the test statistic
under the
alternative
hypothesis

Accept Reject
null hypothesis null hypothesis

null hypothesis correct
is TRUE decision

correct

alternative hypothesis
decision

is TRUE




statistical power

Distribution of the
test statistic
under the null
hypothesis

® Probability that the test will reject the null hypothesis
when the alternative hypothesis is true (i.e. the
probability of not committing a Type Il error).

® The probability of a Type Il error occurring is referred
to as the false negative rate (). Therefore power is
equal to |-, which is also known as the sensitivity.



power analysis

sample size N

Ty — T

effect size d =

Q

X, significance level (0;-05)

power, |-B (the probability of making a type Il error)
(typically set to 80% or 90%)

specific for the test procedure

can be performed before (interesting for the
experimenter, search for N) and after (interesting for
the interpreter, get the power) data collection



power analysis

Two-sample t test power calculation

I
S

n

d

I
N

sig.level = 0.05

power

two.sided

alternative

NOTE: n is number in *each* group



power analysis

Two-sample t test power calculation

n =4
d =2
sig.level = 0.05
power = 0.6568759
alternative = two.sided

NOTE: n is number in *each* group



power analysis




underpowered studies

® have a low sensitivity

® correlate with irreproducibility

As has been shown previously, the
probability that a research finding
is indeed true depends on the prior
probability of it being true (before
doing the study), the statistical power
of the study, and the level of statistical
significance [10,11]. Considera 2 x 2



power analysis - obtaining N

Two-sample t test power calculation

n =
d = 2
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n i1s number 1in *each* group



power analysis - obtaining N

Two-sample t test power calculation

n = 5.090002
d =2
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n i1s number 1in *each* group



overpower!

Two-sample t test power calculation

n = 10000
d =
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n i1s number 1in *each* group



overpower!

Two-sample t test power calculation

n = 10000
d = 0.03962599
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n i1s number 1in *each* group



d - - Genome background

gDNA tags
0.03 - Input tags
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genome background (Online Methods and Fig. 1a). Sequencing
reads from the chromatin input and gDNA samples had different
G+C composition distributions (median, 44% and 47%, respec-
tively; Mann-Whitney test, P < 2.2 x 107!%; Fig. 1a), suggesting
that chromatin may affect sequencing coverage.

We compared the ¢DNA read count-normalized coverage



p-value > 0.05 does not
prove equality!



summary

statistical inferences require

® fulfilment of prerequisites for statistical
testing

® the test to be adequately powered



Back to the beginning

(=, Some thoughts before start pipetting

E test 5 drugs on effect
Vi on gene expression




what is the basic question!
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what is the basic question!

which of the drugs (if any) has an effect on gene
expression!?
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multiple testing

® inflates the type | error rate:
error rates add up with every test conducted within
an experiment
in our case 5 t-tests each conducted at an alpha of
5% will yield an overall error rate of 25%

® if type | error should be controlled, multiple testing
correction procedures have to be applied

® multiple testing typically reduces the power of the
experimental setting (the more tests the lower the
power)



| -way ANOVA with
Dunnett’s test

® omnibus |-way i
ANOVA: does any of —
the drugs have an ]
effect!?

® Dunnett’s post test:
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comparing each to the
control, is there an
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e e‘ control drug A drug B drug C drug D drug E
e  treatment



ANOVA/Dunnett
requirements

normal distribution of data
equal variance

(equal group size)
independent sampling

representative sampling



How to avoid sampling bias!?

® blinding: the person conducting the experiment
should e.g. not be aware of whether control or
treatment is applied

® randomisation: the samples should be assigned
randomly to experimental groups

® exclusion criteria should be defined if exclusion of
data is likely to happen.

® confounding factors have to be identified and
controlled for



A QPR show case

The Journal of Neuroscience, April 16,2014 - 34(16):5529 —5538 « 5529

Neurobiology of Disease

Cannabis Use Is Quantitatively Associated with Nucleus
Accumbens and Amygdala Abnormalities in Young Adult
Recreational Users

Ehe Washington Post

Morning Mix

Even casually smoking marijuana
can change your brain, study says



confounding

Table 1. Participant demographics

CON (n = 20) MJ (n = 20) p-value
Sex (M/F) IM/MTF IM/MTF N/A
Age 20.7 (1.9) 213 (1.9) 0.30
Years of education 143 (3.4) 12.6 (4.8) 0.20
STAI
State 28.9 (7.94) 27.7 (7.38) 0.65
Trait 29.8 (7.32) 29.5 (5.56) 0.89
HAM-D® 0.80 (1.40) [range: 0—5] 1.10(1.37) [range: 0-5] 0.50
TIPI
Extroversion 10.9 (2.36) 10.7 (2.13) 0.78
Agreeableness 10.8 (2.47) 10.7 (1.81) 0.94
Conscientiousness 11.9 (2.08) 11.7 (2.13) 0.76
Emotional stability 10.5 (2.52) 11.4 (2.64) 0.27
Openness 12.1(1.90) 12.4 (1.61) 0.57
Substance use
Alcohol
No. alcoholic drinks/week 2.64 (2.38) 5.09 (4.69) 0.10
AUDIT score 3.30(1.78) 5.50 (2.21) 0.05
Cigarettes
No. of occasional smokers? 0 7 N/A
No. of daily smokers 0 1 N/A
Marijuana
No. days/week 0 3.83(2.36) N/A
No. joints/week 0 11.2 (9.61) N/A
No. joints/occasion 0 1.80 (0.77) N/A
No. smoking occasions/day 0 1.80 (0.70) N/A
Age of onset (years) — 16.6 (2.13) N/A
Duration of use (years) — 6.21(3.43) N/A

All values are expressed in means and SDs. CON, controls; MJ, marijuana users.
“State Trait Anxiety Inventory Form (Spielberger et al., 1983).

®Hamilton Depression Rating Scale (Hamilton, 1960).

“Ten-Item Personality Inventory (Gosling et al., 2003).

“0ccasional smokers reported from 1 cigarette/week to 1 cigarette every 3 months.



Table 1. Participant demographics

confounding

CON (n = 20) MJ (n = 20) p-value
Sex (M/F) IM/MTF IM/MTF N/A
Age 20.7 (1.9) 213 (1.9) 0.30
Years of education 143 (3.4) 12.6 (4.8) 0.20
STAI
State 28.9 (7.94) 27.7 (7.38) 0.65
Trait 29.8 (7.32) 29.5 (5.56) 0.89
HAM-D® 0.80 (1.40) [range: 0—5] 1.10(1.37) [range: 0-5] 0.50
TIPI
Extroversion 10.9 (2.36) 10.7 (2.13) 0.78
Agreeableness 10.8 (2.47) 10.7 (1.81) 0.94
Conscientiousness 11.9 (2.08) 11.7 (2.13) 0.76
Emotional stability 10.5 (2.52) 11.4 (2.64) 0.27
Openness 12.1(1.90) 12.4 (1.61) 0.57
Substance use
Alcohol
No. alcoholic drinks/week 0.10
AUDIT score 0.05
Cigarettes
No. of occasional smokers? 0 7 N/A
No. of daily smokers 0 1 N/A
Marijuana
No. days/week 0 3.83(2.36) N/A
No. joints/week 0 11.2 (9.61) N/A
No. joints/occasion 0 1.80 (0.77) N/A
No. smoking occasions/day 0 1.80 (0.70) N/A
Age of onset (years) — 16.6 (2.13) N/A
Duration of use (years) — 6.21(3.43) N/A

All values are expressed in means and SDs. CON, controls; MJ, marijuana users.
“State Trait Anxiety Inventory Form (Spielberger et al., 1983).

®Hamilton Depression Rating Scale (Hamilton, 1960).

“Ten-Item Personality Inventory (Gosling et al., 2003).

“0ccasional smokers reported from 1 cigarette/week to 1 cigarette every 3 months.



block design, n=5, random

monday

wednesday

tuesday @O@

@ B
thursday friday

http://www.randomizer.org/form.htm
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omnibus ANOVA

pres:
2

log2(ex

i
H
It

H

H
H

chchchch

I I
UUUUUUUU

Df Sum Sq Mean Sqg F value Pr (>F)

treatment

5 21.74
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Dunnett’s test

HH

Simultaneous Tests for General Linear Hypotheses

H

H

Multiple Comparisons of Means: Dunnett Contrasts

Fit: aov(formula = value ~ treatment, data = ideal.measure)

Linear Hypotheses:

Estimate Std. Error t wvalue Pr(>|t]|)
drug A - control == 0 -0.2446 .1513 -1.617 0.352
drug B - control == 0 -0.1505 .1513 -0.995 0.777
drug C - control == 0 -0.9158
0 .1513 1.590 0.368
0 .1513 1.090 0.712

drug D - control == 0.2406
drug E - control == 0.1649

Signif. codes: 0 ‘***x/ (0,001 ‘**x’ 0.01 '** 0.05 '.” 0.1 ‘"
(Adjusted p values reported -- single-step method)

O OO O0oOOo

g drug
ttttttttt

1513 -6.053 <le-04 ***

1




report - the figure
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Materials and Methods:

RT-gqPCR was performed with Kit Q according to
reference[1]. 5 independent biological replications were
performed. Technical replicates (3 for each measurement)
were averaged before analysis. Statistical analysis was done
with R. I-way ANOVA with Dunnett’s post test was applied
using standard parameters.

Fig.1: Drug C inhibits expression of gene x. RT-
gPCR measurement of gene x transcript levels
upon administration of a solvent control or 10 yuM
of drug A to proliferating XYZ cells for 24 hours.
Error bars indicate the SEM of biological
replicates (n=5).

Results/Discussion:

[...] we observed changes 1n
gene expression of gene X
upon treatment with drug C
(95% CI (-1.30;-0.53), p-
value<0.001 (Dunnett’s test))

[...]

Supplementary table
1-way ANOVA and Dunnett’s test result as well as raw

measurement values



statistical significance
does not equal
biological relevance

. and vice versa



problems of p-values

-1.15 -2.04 -0.27 0.019
-1.23 -2.44 -0.01 0.049
-1.39 -1.89 -0.89 0.000
-0.35 -1.23 0.53 0.367
-0.92 -1.36 -0.48 0.001
-0.61 -1.45 0.24 0.138
-1.30 -1.71 -0.89 0.000
-0.41 -0.89 0.07 0.083
-1.04 -2.22 0.13 0.073
-0.60 -1.52 0.31 0.164
-0.85 -1.74 0.03 0.057
-1.03 -1.78 -0.27 0.016
-0.80 -1.43 -0.18 0.018
-0.88 -1.77 0.02 0.055
-1.51 -1.89 -1.13 0.000
-0.97 -1.88 -0.07 0.038
-1.10 -2.00 -0.19 0.025
-1.37 -2.03 -0.72 0.001
-1.30 -1.88 -0.72 0.001
-1.34 -2.07 -0.61 0.004
-1.21 -1.99 -0.42 0.011
-1.25 -1.53 -0.98 0.000
-0.67 -1.41 0.07 0.068
-1.44 -2.14 -0.74 0.003
-1.30 -2.18 -0.41 0.010
-1.14 -1.61 -0.67 0.001
-0.94 -1.86 -0.02 0.047
-1.41 -2.14 -0.69 0.003
-0.80 -1.31 -0.29 0.007
-0.65 -1.69 0.38 0.179



problems of p-values

p-values are highly unreliable
(irreproducible) even at large n!

p-values do not reveal the underlying effect
size

confidence intervals are better descriptors
of the robustness and extend of effects



a p-value is a p-value

® a p-value is not necessarily a proxy for
reproducibility

® many applications produce “technical p-
values” which cannot give any information
on biological robustness.

Examples: Database searches, peptide
identification in mass spectrometry, peak
calling and other within-experiment analyses



p-value hacking (fishing)

Simmons JP, Nelson LD, Simonsohn U. 201 1.
False-Positive Psychology: Undisclosed
Flexibility in Data Collection and Analysis

Allows Presenting Anything as Significant.
Psychological Science 22: 1359-1366.

@ sampling bias, the “drawer problem”

@ trying different testing procedures

@ sequential testing

@ multiple endpoints reporting only the significant ones



Suggestion to authors

® Authors must decide the rule for
terminating data collection before data

collection begins and report this rule in the
article

® Authors must list all variables collected in a
study

® Authors must report all experimental
conditions, including failed manipulations



the Jens Forster case

“if the data did not confirm the hypothesis, |
talked to people in the lab about what needs to
be done next, which would typically involve
brainstorming about what needs to be changed,
implementing the changes, preparing the new
study and re-running it”



research types

® exploratory research
® hypothesis generating
® no/little prior information on effects, frequently many endpoints measured

® often not complying with elementary rules of sampling and experimental layout
(e.g. sequential sampling)

® statistical testing will yield highly problematic results (low power, high error
rate), potentially irreproducible

® confirmatory research
® performed to confirm hypotheses
® solid prior knowledge on effects
® involves prior power analysis, thoughtful experimental layout

® generates more reliable statistical test results, potentially reproducible



a pragmatic solution

in basic exploratory research - “discovering something
new’ - we cannot generate high confidence results that
are likely to be reproducible. (N is low, statistical power is
poor)

representative/unbiased sampling is fundamentally
Important

instead of reporting p-values we should mainly focus on
reporting the effect size (or, if inference is desired,
confidence intervals).

multiple testing correction and any other complex
statistical treatments/tests should be simply omitted.

Ask simple questions and perform simple tests.



a pragmatic solution

if one wishes to obtain a higher certainty rules
for confirmatory research apply

prerequisite is prior information given e.g. by
pioneering experiments for the estimation of
the effect size

ideally a more complex experimental setting
should be reduced to a simple 2-level
comparative study

thorough experimental design and an a-priori-
power analysis has to be performed



a pragmatic solution for
Interpretation

® when evaluating exploratory research
results, which are probably the vast
majority of results in basic life science
research, we have to keep their limitations
in mind (i.e. the p-values are pretty
meaningless).

® But still: it is the data that matters, not the
story.



Experimental design

® Aim:

® Generalisation, Inference, Induction

Taste |. Potential sources of confusion in an experiment
and means for minimizing their effect.

® Elimination of systematic errors and non-

. . . . Features of an experimental
biological variances (noise) design that toduee o
Source of confusion eliminate confusion
Estimati f the ‘biological effect’
® Estimation of the ‘bio ogical e ect 1. Temporal change Control treatments
2. Procedure effects Control treatments
. . 3. Experimenter bias Randomized assignment of
® Design has to be set up before data collection experimental units to
treatments
. Randomization in conduct
® Important means: of other procedures
“Blind” procedures*
. . . 4. Experimenter-gener- Replication of treatments
® Manipulative study (comparing untreated ated variability
d (random error)
versus treate ) 5. Initial or inherent Replication of treatments
variability among Interspersion of treatments
P S | . d d t t t experimental units Concomitant observations
amP € In ePen ence’ represen ativi Y’ 6. Nondemonic intrusion Replication of treatments
Interspersion of treatments
7. Demonic intrusion Eternal vigilance, exorcism,

® randomization (increases accuracy), replication ernal vigilance, exor
(increases pl"eCiSion) * Usually employed only where measurement involves a

large subjective element.

. . t Nondemonic intrusion is defined as the impingement of
o bllndlng chance events on an experiment in progress.

Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54(2): 187-211.



a well designed experiment
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® randomised block design

o ANOVA with fixed effect (treatment) and
random effect (block)

® Problem: randomisation and statistical testing
should involve an experienced statistician



the ideal design

friday

wednesday . .

O
. . thursday

tuesday

® randomised block design, only 2 factor levels (control, treatment)

® suited to control for day-to-day fluctuations which are very
common. Ideally one would change reagents, batches of cells etc.
between the blocks as well. Every block a new batch, every block
new reagents.

® paired t-test



N is (too) small, what can you do!

® |mprove experimental design

® simple comparative studies (2-group) have higher
power than complex studies

® reduce systematic noise by e.g. random block design
® |Improve the power of statistical test

® paired tests instead of unpaired tests (requires
appropriate experimental design)

® avoid making comparisons that are of no interest



Documentation

DFG:“Primardaten als Grundlagen fur Veroffentlichungen
sollen auf haltbaren und gesicherten Tragern in der Institution,
wo sie entstanden sind, zehn Jahre lang aufbewahrt werden.”

Always keep the raw data (measurement results, unprocessed
images). Ideally the raw data should be part of publications.

All experimental details (including computational analysis
codes) have to be documented and ideally made available in
publications.

Raw data and experimental details should be disclosed among
research collaborators.



Towards reproducible research

® Familiarise yourself with the basic concepts of
statistics and experimental design.

® Try to test simple hypotheses.

® Sample in an unbiased way.

® Keep the raw data and make it available to others.
® Report confidence intervals (of effects) and N.

® Be the most critical judge over your own data.

® Don’t trust p-values. Not at all.



useful links

http://udel.edu/~mcdonald/statintro.html

http://www.randomizer.org/form.htm

http://www.statisticalsolutions.net/
pss_calc.php

http://www.wormbook.org/chapters/
www _statisticalanalysis/statisticalanalysis.html

www.statisticsdonewrong.com



http://udel.edu/~mcdonald/statintro.html
http://www.randomizer.org/form.htm
http://www.statisticalsolutions.net/pss_calc.php
http://www.wormbook.org/chapters/www_statisticalanalysis/statisticalanalysis.html
http://www.statisticsdonewrong.com

